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We describe a mechanistic picture of the essential dynamical processes in the growing 
Tollmien-Schiichting wave in a Bfasius boundary layer and similar flows. This picture 
depends on the interaction between two component parts of a disturbance (denoted 
'partial modes'), each of which is a complete linear solution in some idealization of the 
system. The first component is an inviscid mode propagating on the vorticity gradient 
of the velocity profile with the free-sIip boundary condition, and the second, damped 
free viscous modes in infinite uniform shear with the no-slip condition. There are two 
families of these viscous modes, delineated by whether the phase lines of the vorticity 
at the wall are oriented with or against the shear, and they are manifested as resonances 
in a forced system. The interaction occurs because an initial 'inviscid' disturbance 
forces a viscous response via the no-slip condition at the wall. This viscous response is 
large near the resonance associated with the most weakly damped viscous mode, and 
in the unstable parameter range it has suitable phase at the outer part of the boundary 
layer to increase the amplitude of the inviscid partial mode by advection. 

1. Introduction 
Although the mathematical theory of the stability of sheared viscous flows was 

developed many years ago, the physical mechanism behind the process of instability 
has received relatively little attention, and still remains obscure. Why does the addition 
of viscous forces to an otherwise stable shear flow sometimes render it unstable? This 
well-known fact is contrary to normal intuition, and is one of the classic paradoxes of 
fluid mechanics. Prandtl gave an argument in terms of Reynolds stresses. A brief sketch 
in terms of vorticity was given by Lighthill (1963, pp. 92-93), and a more detailed 
explanation was attempted by Betchov & Criminale (1967). More recently, in a 
stimulating paper Lindzen (1988, and references therein) has proposed an explanation 
in terms of the Orr mechanism, but no general consensus as to a clear physical picture 
has yet emerged. Apart from being interesting in itself, a physicaI understanding of this 
viscous instability should be useful in comprehending the more complex phenomena 
that occur in boundary layers when disturbances grow to become nonlinear and three- 
dimensional. 

In this paper we describe a physical mechanism for the two-dimensional instability 
of a Blasius boundary layer, and similar flows, where the resulting growing disturbance 
is known as a Tollmien-Schlichting wave. This instability is the initial part of the 
process of transition to turbulence in boundary layers in common situations such as on 
aeroplane wings. The essential mathematics is over 60 years old (Schlichting 1968). The 
mechanism of instability is described here in dynamical terms, and is based on the 
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interaction between two idealized modes of the system: an 'inviscid' mode, which is 
neutral when viscosity is zero and a decaying viscous mode (or modes) that exists in 
uniform shear. The latter is forced by the former via the no-slip boundary condition 
at the wall. This dynamical picture is different from that proposed by Lindzen (1988), 
see 97, and is an extension to viscous fluids of the ideas presented in Baines & 
Mitsudera (1994) for instability of inviscid shear flows. An early version was presented 
in Baines & Mitsudera (1992). 

One common complication in flows of this sort is the effect of non-zero vorticity 
gradient (U,,) at the critical layers on the flow conditions on either side of it. In this 
paper we have sidestepped this effect by concentrating on flows where U,, is negligibly 
small at the critical layer, in the interests of simplifying the physical picture. 

The properties of these idealized modes are described in 493 and 4, and the 
interaction mechanism of instability in 995 and 6. Apart from their significance for 
instability, the modes in viscous uniform shear are interesting in their own right, as they 
provide a simple illustration of properties of disturbances in sheared viscous fluids with 
critical layers, as described in 94. 

2. Equations 
We consider a viscous fluid that has velocity profile U(z) in the undisturbed state, 

where x and z are horizontal and vertical coordinates. The equations governing small 
disturbances to this basic state are 

where u', w' and p' denote perturbation quantities of velocity and pressure from the 
mean values U, 0 and pol and v is the kinematic viscosity. Equation (2.3) implies that 
we may define a perturbation stream function y5- by 

I a$b I a$b 
a Z  ax. 

u =-- w =- 

If 5 is the perturbation vorticity, (2.1)-(2.3) give the vorticity equation 

We look for disturbances in the form of normal modes, namely 

and substituting into (2.5) gives the Orr-Sommerfeld equation for $: 
2 (2.6) y5- = eik(s-et) 

For such flows the vertical displacement 7 of a particle is 

, where $ =  (U-c)?. (2.8) l;r = f ( z )  eik(z-ct) 
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FIGURE 1. The velocity profile of a Blasius boundary layer over a flat plate, together with the 
idealized profile (2.9) with 6 = 0. 

The velocity profile of a Blasius boundary layer, due to flow over a flat plate 
commencing at X = 0 where X is the coordinate along the plate, is shown in figure 1. 
We may define a boundary-layer ‘thickness’ d by the intersection of the two straight 
lines as shown. In practice d = 3.15(~X/U,)~’~, and varies slowly with X ,  but it is 
assumed constant here (the ‘ parallel-flow approximation ’). For present purposes it will 
be convenient to instead use analytically simpler profiles of the form 

U(Z) = U,z/d,  0 < z < d-  6, 

= u,, z >d+& (2.9) 
which give a good approximation to the Blasius profile when 6 / d  = 0.32. These profiles 
are smooth except in the special case of S = 0, where the central region disappears and 
there is a vorticity interface at z = d. 

We next take non-dimensional variables x*, z* and t* defined by 

X* = x / d ,  Z* = z /d ,  t* = tU,/d, (2.10) and define 
&*) = $1 U, d,  C(z*) = U(z)/  U,, C = c /  U,,, a = kd, Re = U, d /v ,  (2.1 1) 
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where Re is the Reynolds number. Equation (2.7) then becomes 
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With the no-slip boundary condition at the wall, and the requirement that the 
disturbance be bounded as z i 00, the boundary conditions are 

(2.13) 

The solution of this mathematical problem for the eigenvalues C and the 
eigenfunctions # goes back to Tollmien and Schlichting and is well-described in several 
texts (e.g. Stuart 1963; Schlichting 1968; Drazin & Reid 1981), and the stability 
properties of the system are well known. Our purpose here is to describe the mechanics 
of this process. To do this, in the next two sections we examine the possible free modes 
that may exist in simple idealizations of the Blasius profile. 

3. The inviscid mode 

condition, the idealized profile (2.7) with 6 = 0 has one free mode with the form 
If (2.12) is simplified to the inviscid system (Re = 03) with the free-slip boundary 

#J = sinh az*/sinh a, 0 6 z* 6 I ,  
, z* 2 1, 

tanh a 
a( 1 + tanh u) . 

- - e-a(z*-l) 

with eigenvalues 

c= 1- 

All these wave speeds C are therefore positive, ranging from 0 to 1. This represents a 
wave on the vorticity interface at z* = 1, propagating against the flow and advected 
with it. Equation (3.2) is expected to give a good approximation to the dispersion 
relation for the corresponding wave on profiles (2.9) with S up to about 0.3, and for 
waves on the Blasius profile itself, provided that a and C are small. 

4. Viscous modes in uniform shear 
We next consider modes in a velocity profile with uniform shear, namely 

U(Z) = uzz, (4.1) 
where U, = dU/dz is constant. The existence of such modes has been noted before (e.g. 
Grohne 1954; Corcos & Sellars 1959), but not, apparently, their detailed properties 
that are required here. For this system the term U,, is absent from (2.7), and the 
resulting terms suggest that the appropriate length and time scales L and T are 

with speed scale L / T  = ( ~ q / k ) l ’ ~ .  These modes are of interest in their own right, and 
hence we adopt this scaling for this section. Defining 

L = ( ~ / k U ~ ) l / ~ ,  T = l/LJz, ( 4 4  

Z’ = z / L ,  t‘ = t / T ,  c’ = cT/L, K = k L  = (vk2/Uz)li3, (4-3) 

(4.4) 

Z@‘ = 0, (4.5) 

and writing 

(2.7) becomes 
d2@’ 
d Z 2  
__- 
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FIGURE 2. Complex wave speeds (eigenvalues) c i  = ci,. + icbi for decaying viscous modes in 
uniform shear, n = 1,2,3,. . . , for K = 0.00677. 

where 2’ = -(i( z’ - c’) + 2) .  (4.6) 

@’(z’) = Ai (2’ ei2n/3), (4.7) 

The solution to (4.5) that decays to zero when z’+ 00 is 

where Ai is the Airy function. From (4.4) $ is given by 

where A is a constant. AAand c’ are then determined by the no-slip conditions at 
z‘ = 0, namely 4 = 0 = d$/dz‘, which give A = 0 and 

This equation may be solved to obtain an infinite set of eigenvalues c’ for each K, which 
immediately give the corresponding eigenfunctions for the vorticity @’ and stream 
function 4 from (4.7) and (4.8). We therefore have an infinite discrete spectrum of free 
solutions, where the discretization is specified by the no-slip boundary conditions at 
z’ = 0. These solutions do not appear to have been described before, although their 
presence is implicit in many treatments of boundary-layer disturbances (e.g. Drazin & 
Reid 1981) and in triple-deck formulations (Smith 1979; Bogdanova & Ryzhov 1983). 

Writing c’ = c: + ic;, for all of these modes c; is positive and c i  is negative, so that 
they decay with time. They are numbered in order of increasing values of c:, and for 
the nth mode we write c i  = c : ~  +kin. The values of c i  for the first 15 modes are shown 
in figure 2 for K = 0.00677. These are very close to the values for K = 0 (and also for 
K = 0.0353 below). For most situations of interest in this paper K is very small 
(< 0.086), and the values in figure 2 are taken as representative for the present discus- 
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FIGURE 3 .  Amplitude (solid line) and phase (dashed) of the vorticity as a function of z' for the first 
mode of (a) the lower family of figure 2 and (b) the upper family, for K = 0.0353. The scale of the 
abscissa has a chosen maximum of three for the amplitude, and is in radians for the phase. 

sion. The plotted values in figure 2 lie along two approximately straight lines. These 
lines identify two separate families of eigenfunctions, which derive from the symmetry 
properties of the Airy function about the real axis, and its oscillatory behaviour in the 
half-plane where the real part of the argument is negative. Figure 3 (plotted for K = 
0.0353) shows the form of the vorticity for the first member of each family. For the 
members of the first or lower family in figure 2, the lines of constant phase for vorticity 
have positive slope ( = K/arg (Ai (2' e2"i'3)) in physical space (x, z), and the first mode 
(depicted in figure 3 a)  has approximately uniform slope of O(K) from the wall upwards, 
over the distance shown. This slope decreases slowly with z' as z' becomes large, and 
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9 (2 ‘1 
FIGURE 4. As figure 3 but showing the stream function. 

does not appear to asymptote to a finite value. The net effect of uniform shear and 
viscosity on the vorticity of this periodic disturbance is therefore a decaying structure 
with positive slope of order K ,  with diffusion preventing the structure from being 
advected to smaller slopes and scales by the shear, as would occur in an inviscid fluid 
(Phillips 1966; Hartman 1975). 

For the second or upper family of modes in figure 2, for which the first member is 
depicted in figure 3(b), the slope of the phase lines for vorticity in physical space is 
negative at the wall. But at finite distances from it the vortex lines are advected and 
rotated by the shear, and this causes the slope of the phase lines to reverse sign at a 
distance where c, z U. At still larger distances these lines approach a slope of order K 

as for the first family. A travelling stress pattern at the wall, with wavenumber k and 
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FIGURE 5. As figure 4, but for the fourth mode of (a) the lower family, and (b) the upper family; 
K = 0.0353. 

positive speed c in fluid at rest with no shear would produce phase lines with negative 
slope, diffusing away from the wall. The structure of the members of the second family 
of modes shows the effect of uniform shear on such motion. 

From (4.8), the stream function & (and hence the velocity) extends beyond the range 
of z' where the vorticity @' is significant, and has irrotational behaviour e-"' = e-kz far 
from the wall, with uniform phase. Amplitudes and phases for $ for the first mode for 
each family are shown in figure 4. Note that the first mode of the upper family, which 
has the smallest decay rate of all, has a simple amplitude structure and approximately 
uniform phase. 

Examples of the structure of the higher modes are presented in figure 5, which shows 
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the stream functions for the fourth mode for each family. The properties are similar to 
those for the first modes, although the main part of the mode is concentrated further 
from the wall, near where c, = U(z). 

These modes are free disturbances that satisfy the no-slip boundary condition and 
have a non-zero stress pattern at the wall, travelling at the specified speed for given k. 
They may be generated by suitable initial conditions, and then decay exponentially 
with time without varying their structure. They are not 'wave modes', since they are 
governed by advection and diffusion of the disturbance vorticity (2.7 with U,, = 0). 
However, they resemble damped wave modes in systems with restoring forces, and will 
be regarded as such in the discussion below. The reason why these discrete modes exist 
at all is not intuitively obvious, but one may interpret the spectrum in terms of the ratio 
of length scales. In addition to the intrinsic length scale L, a given wave speed c gives 
an additional length scale z,, the distance from the wall to the level where U(Z,) = c,. 
The boundary conditions at the wall constrain the structure there, and coherent 
structures or 'resonances' are obtained when the distance z ,  is some suitable multiple 
of L. This results in the approximately evenly spaced eigenvalues for c. 

For later reference we also need these modes in the notation of the non- 
dimensionalization (2.10) and (2.11). Here equations (4.5)-(4.9) for the modes in 
viscous infinite shear become 

Z@=O, @=--- d2$ a2q5, 
d2@ 
dZ2 dz*2 
__- (4.10) 

where 
@(z*) = Ai(ZeiZnI3), 2 = -(aRe)1/3(i(z*-C)+a/Re). (4.1 1) 

The solution for q5 in terms of @ is 

with 

The eigenvalues may be expressed as 

, " 

c = C, = c,,+ic,, = Ln n =  1,2,3 ,..., 
( E R ~ ) " ~ '  

(4.12) 

(4.13) 

(4.14) 

where ck denotes the value of c' for the nth mode (see figure 2), and is approximately 
constant if K = ( ~ z ' / R e ) ~ / ~  is small (the variation is a few percent for K in the range 
of interest, from zero to 0.086). For the second and most weakly damped mode, for 
K = 0, 

(4.13 - 1.06i) 
(aRe)'I3 

Cr2+iCi, = (4.15) 

The eigenvalues shown in figure 2 have a similar pattern to the eigenvalues for 
decaying modes for the Blasius profile, as described by Mack (1976) and Antar & 
Benek (1978). For given a and Re, there is a finite number of the latter, with the speeds 
cJU0 < 1. As Re increases, so does the number of these modes; their values of c/Uo 
also decrease (see Mack 1976, figure 2), and those for the lowest modes approach the 
values shown in figure 2 (with the appropriate value of K). In other words, as the 
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vertical scale of these modes of the Blasius profile decreases with increasing Re and they 
move closer to the wall, they become identifiable with the modes in uniform shear 
described above. 

If a travelling velocity field of the form 

u = u, cos (k(x - cr)), w = 0 (4.16) 

is specified at z = 0 in place of the no-slip condition, then the solution for @ has the 
form 

(4.17) 

The denominator is the same integral as in (4.9), with the difference that c is now real 
and specified. Hence a maximum response is expected when c is close to the complex 
zeros of (4.9). In fact, as seen below, the significance of the viscous modes of this 
section for the instability is that they represent coherent structures that may be excited 
in a resonant fashion by forcing at the boundary. 

5. Stability properties and growing modes of Blasius and Blasius-like 
profiles 

Growth rates and phase speeds for growing disturbances to the BIasius profile have 
been computed by several authors, and are summarized in Schlichting (1968). Figure 
6, taken from this book, shows the region of instability in the (a, Re)-plane. Properties 
of the eigenvalues of other modes have been described by Mack (1976). 

Here we investigate some properties of the simpler model profiles (2.9) that 
approximate the Blasius profile. This enables the flow profiles to be varied, and has the 
advantage that the structure of the eigenfunctions in the three parts of the profile may 
be expressed in terms of exponential and Airy functions, and hence related to the 
modes of $83 and 4. Further, the procedure for finding the modes may be reduced to 
algebra by satisfying the boundary conditions at the junctions z = d+6. One 
approximation has been made, namely that in the term (U-c)  in (2.7) in the central 
region where / z  - dl < 6, U has been approximated by a constant value Uo( I - yS/d), 
where y typically has a value of 0.25. This approximation was tested by varying y near 
this value, and little change in the results was found. 

The regions of instability on the (Re, a)-plane for disturbances to the profile (2.9) are 
shown in figure 7 for various values of S/d. These stability properties are sensitive to 
the precise shape of the profile and are discussed in the next section, but for S/d x 0.32 
where the profile resembles the Blasius profile, the region of instability in the (Re, a)- 
plane resembles that shown in figure 6. However, the upper branch of the curve for 
S/d = 0.32 lies substantially above that for the Blasius profile. This difference may 
be attributed to the absence of the effect of non-zero U,, at the critical layer in the 
idealized profile. The inclusion of this effect would result in the damping of the 
'inviscid' vorticity mode, and also cause changes to the interaction across the critical 
level that are proportional to UZz. These effects can stabilize the flow at larger a. As S/d 
decreases to zero the region of instability shrinks and contracts toward larger Reynolds 
number. It appears to disappear altogether in the limit S+O, so that the flow is 
apparently stable for any Re for sufficiently small 6, and for finite 6 if Re is less than 
some upper bound. 



The mechanics of the Tollmien-Schlichting wave 

A 

117 

Stable 

" 
1000 2000 3000 4000 5000 

A 
Re 

'B 

lo2  103 104 105 lot 

Re 

FIGURE 6. Regions of instability of a Blasius boundary layer on the (Re,a)-plane: (a) linear scale for 
Re, (b) logarithmic scale. The line AB denotes (5.1), and the vertical dashed line denotes the critical 
value of Re. Modified from Schlichting (1968). Note that the Reynolds number and wavenumber in 
these diagrams in Schlichting (1968) are defined in terms of the displacement thickness 8, rather than 
d, where S, = 0.55d. (The neutral curves in the two figures are in fact incompatible near CY = 0.4, 
indicating the uncertainty at the time of computation.) 

We may expect that the modes for the idealized situations in 993 and 4 may have a 
presence in some modified form in modes for the Blasius and near-Blasius profiles, and 
we term them partial modes here. If one equates the speed (3.2) for the inviscid mode 
of 93 with the speed C,, from (4.15) for the most weakly damped viscous mode of 94, 
one obtains the following relation between a and Re:  

69.93 
a( 1 - (1 /2a) (1 - e-2a))3 

Re = 
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FIGURE 7. Boundaries of instability on the (Re, a)-plane for velocity profiles (2.9) 
for values of 6 / d  as shown. 

#@*I 
FIGURE 8. Form of the stream function of a typical eigenfunction for a growing mode for the model 
profile (2.9) with 6/d = 0.32 in the unstable region; Re = 3636, a = 0.2. The solid line denotes 
amplitude and the dashed line phase, with the scale of the abscissa as in figure 3. The horizontal lines 
denote z = d_+ 8. 

This relation is shown plotted in figures 6 and 7 as the curve AB. The fact that (5.1) 
passes through approximately the centre of the unstable region for the Blasius 
boundary layer, close to the line of maximum growth rate, strongly suggests that the 
instability obtained by solving the full eigenvalue problem is caused by mutual 
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interaction between these two free partial modes, which may be expected to be 
manifested in some form in the growing disturbances. In the next section we discuss the 
mechanics of this process. 

Figure 8 shows the structure of the stream function for a representative growing 
mode for the profile (2.9) with 6 / d  = 0.32. This mode was computed for a number of 
other values of Re and a in the unstable region, but these all had the same simple 
structure for amplitude and phase. 

6. The mechanism of instability 
For many unstable inviscid shear flows, for both homogeneous and density-stratified 

fluids, the essential kinematic mechanism of instability may be described in terms of the 
interaction of two 'partial modes' of the system (Sakai 1989; Baines & Mitsudera 
1994; Baines 1995). For these unstable systems the flow profile may be separated into 
two stable wave guides, each of which supports neutral waves when in isolation, and 
where waves in one waveguide may propagate in the opposite direction to waves in the 
other. From an energetic viewpoint these neutral waves have positive and negative 
energy (Craik 1985); and they are the 'partial modes' in the complete system. We may 
extend these notions here to explain Tollmien-Schlichting waves in the same way. 

For the Blasius and near-Blasius boundary-layer profiles, the inviscid mode of 6 3 
and the viscous decaying modes of 94 may be regarded as 'partial modes' in a 
generalized sense; under suitable conditions each may approximate a complete mode 
of the system, but the viscous modes are concentrated close to the wall (if Re + I), and 
the inviscid mode (most significantly) fails to satisfy the no-slip boundary condition. 
Since the results of the previous section indicate that instability results from their 
interaction, we investigate how this may occur. 

We begin by imagining that an inviscid partial mode is present, propagating in the 
fluid with a Blasius or near-Blasius profile, with a stream function $i given 
approximately by (3.1) for z* not near 1, and a dispersion relation given approximately 
by (3.2). This motion will have a non-zero velocity at  the wall. If the no-slip condition 
there is to be satisfied by the nett resulting motion, the horizontal velocity at z = 0 must 
be annuled by additional viscously forced motion, $u. We may assume that this motion 
has the form (4.16), and the response that this forcing produces in a uniformly sheared 
viscous fluid has vorticity @ given by (4.17), and stream function $u = q5 eikz where q5 
is given by 

q5(z*) = -A(sinhaz* a lZ: Ai e-"id[+e-""*[*Ai 0 sinhat d o ,  (6.1) 

where 

Ai = Ai (.Z([) eZnii3), Z(C) = - (aRe)"3 

and 

(These equations may alternatively be expressed in terms of K and c'.) Here C = c/U,  
is real, and is determined by the speed of the (notional) inviscid mode. Equation (6.1) 
is very similar to (4.12), the only difference being that some exponentials are replaced 
by sinh functions. A typical example of q5(z*) from (6.1) for C near C,, is shown in 
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FIGURE 10. Amplitude (solid line) and phase (dashed line) at z* = 1 of the stream function of the 
forced viscous response to periodic velocity at z = 0, travelling at speed C. a = 0.4, Re = 3636. The 
amplitude scale is again arbitrary, and the scale of the phase is in radians. (Note that the ordinate is 
-m)> not i ( l ) > .  

figure 9. The magnitude of the forced response (6.1) is sensitive to the value of C, and 
we may expect near-resonant behaviour when C is close to C,, for n = 1,2,3 . . . . An 
example of the variation of $(1) with C is shown in figure 10. There is a single major 
peak between C,, and Crz, which implies that these two potential resonances overlap, 

FIGURE 9. Profile of the stream function for the motion forced by a travelling periodic velocity at 
-7 = 0 as given by equation (6.  l), travelling at given speed C = 0.35 with a = 0.4, Re = 3636. The 
solid line denotes amplitude and the dashed line phase, as in figure 3. 
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FIGURE 1 1. Schematic diagram of the interaction process that causes growth in a Tollmien-Schlichting 
wave. The flow is drawn in the frame of reference moving with the wave, so that the pattern is 
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vertical displacement of the vortical region of the inviscid partial mode propagating on the vorticity 
gradient. In this partial mode the fluid at the boundary z = 0 has the velocity denoted by the solid 
arrows, and the no-slip condition forces a viscous response represented by the dashed arrows. The 
dashed curves show the phase of this viscous response for the maxima in vertical velocity w,. Since 
this is close to the maxima in vi,  it increases the amplitude of the vortical partial mode by advection. 

and a second peak near Cr3. Equation (6.1) cannot be expressed solely in terms of the 
free modes of 94, but will have a significant projection on them, particularly on the nth 
mode when Cis close to Crn. Close to the wall, where the mean shear has had little effect 
on the disturbance, the slope of the vortex lines will be negative, but this slope will 
become positive further from the wall as these lines are rotated by the shear. Hence we 
expect the modes of the second family (figures 3b, 4b) to be more prominent in this 
motion than the modes of the first family. 

If we take axes moving with the initial inviscid wave at speed c, we may write 
yi = qI eikx for the vertical displacement of the vortical region ( = vorticity interface 
for (3.1)), where qr > 0. This is related to the velocity field of the inviscid mode by 
(2.8) and (approximately) (3.1). To satisfy the no-slip condition at the wall, this 
forces 

@c., = $(z*) eikx, 

where $(z*) is given by (6.1)-(6.3) with ug > 0. For z* 2 1 

$(z*) - - IBI e-az* eiP, (6.5) 
where B is a constant. Figure 10 shows #(z* = 1) as a function of C for CI = 0.4 (and 
Re = 3636). From (3.2) the inviscid partial mode has speed C = 0.33, and for this value 
/3 M 1.3 radians. The associated velocity field is then 

w, = ik$(z*) eikx, (6.6) 
and if we superimpose this velocity field on the initial wave, it is approximately in phase 
with the displacement qi of the vortical region. Since these two flow patterns are 
stationary in this frame of reference, this velocity w, will tend to increase rI by 
advection. This will increase the overall amplitude of the inviscid mode 7++i and hence 
in turn $u, provided the effect is large enough to overcome the internal viscous 
dissipation. Figure 9 bears a general resemblance to the unstable mode in figure 8, and 
this is not altered if an inviscid mode is added to the motion in figure 9, since the latter 
has no phase variation with z*. 

This interaction process is shown in schematic form in figure 11, and parallels the 
mechanism described for inviscid fluids in Baines & Mitsudera (1994). It should be 
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noted, however, that this is not simply the interaction between two modes. The fact 
that curve AB in figure 6 does not coincide with the line of maximum growth rate is 
related to the fact that the maximum response in (6. I )  due to boundary forcing occurs 
for C between C,, and Cro, not at Cr2. 

The variation of the curves in figure 7 with 6/d may be understood in terms of this 
process. As 6/d decreases below 0.32 to 0.15 and 0.1, the upper boundary of the 
unstable region rises. This may be attributed to the higher (Ieftwards) propagation 
speed of shorter waves on the thinner vortical region, apparently facilitating the 
destabilizing interaction. But as 6 / d  is decreased further, the increased shear within the 
thin vortical region causes the dissipation there to increase so that growth rates 
decrease, and the boundary of instability on the (Re,  a)-plane contracts toward higher 
Reynolds numbers. For small 6/d ,  curve AB (in figure 7) is now no longer close to the 
region of maximum growth rate unless Re is very large, because the inviscid expression 
(3.2) is no longer a suitable approximation to the wave speed of the vortical partial 
mode. 

7. Summary and discussion 
We have presented a mechanistic picture of the workings of the Tollmien-Schlichting 

wave in a boundary layer by describing it in terms of the interaction between an 
inviscid component or ‘partial mode’, and the resulting forced viscous motion. The 
latter is forced by the no-slip boundary condition at the wall, and it increases the 
amplitude of the inviscid partial mode by advecting the vorticity-gradient region at the 
outer part of the boundary layer, thereby increasing its displacement. The amplitude 
and phase of the viscous response are sensitive to the speed of the inviscid partial 
mode: when this is close to the speed of the most weakly damped free viscous mode 
in uniform shear, the amplitude is large and the phase favourable for positive forcing. 
This paper has been concerned with temporal instability, but the same physical 
arguments and processes may be applied to spatially growing instability (with real c 
and complex a). 

We have also described a set of modes in uniformly sheared viscous flow, adjacent 
to a rigid boundary. These represent spatially coherent structures in the fluid that are 
advected and decay at a uniform rate. They are interesting in their own right for the 
insight they provide into the effect of shear on disturbances in viscous flows, and can 
be identified with some of the modes that have been found numerically for the Blasius 
boundary layer. 

Lindzen (1988) (and Lindzen & Rambaldi 1986 for Poiseuille flows) discussed the 
viscous instability in terms of wave over-reflection. They considered the boundary layer 
at the wall to be a sink of wave flux that pulls the vorticity-wave flux past the critical 
level, where the wave is advected by the basic flow and grows via the Orr mechanism. 
This might be an interesting point of view, but the argument is essentially an inductive 
one. In particular, no mathematical demonstration has been given that the transient 
Orr process may be made continuous, so as to give exponential growth of a normal 
mode. And there are examples to which it clearly does not apply, such as instability in 
uniform shear with the shallow water equations (Takehiro & Hayashi 1992). In the 
present paper we have shown that the boundary layer supports viscous partial modes 
in the presence of the mean-flow shear, and that the excitation of the weakest damped 
of these partial modes causes a positive feedback on the external vorticity wave, as 
displayed in figure 11, resulting in wave growth. In this picture the critical level is 
merely a level where the wave and the flow travel together, and it is not directly 
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involved in the interaction process. Its presence simply ensures that the phase speeds 
of the viscous and vortical modes have opposite signs to each other. 

In summary, the evidence for the veracity of this physical picture is as follows. 
(i) If one equates the speed of the inviscid partial mode with the most weakly 

damped viscous partial mode in uniform shear, one obtains (5.1), curve AB in figure 
6. Since this applies over the whole range of CL and Re, it implies that the instability 
process derives from the interaction between these modes in some way. 

(ii) The phase of the forced viscous response to an inviscid partial mode is as 
required to give mutual forcing, and its amplitude becomes large through resonance, 
when the wave speed approximately coincides with the most weakly dampled viscous 
partial mode. The mutual forcing must also be strong enough to overcome the inherent 
damping due to viscosity. 

(iii) The structure of the eigenfunctions for growing modes in the Blasius-like 
profiles (figure €9, including the variation of phase with z ,  approximately resemble a 
superposition of an inviscid partial mode plus the viscous forced response. 

(iv) The concept of instability in shear flows through the mutual interaction of 
‘partial modes’, and in particular by the advection of one mode by the velocity field 
of another, has been demonstrated elsewhere for inviscid flows (Craik 1985; Sakai 
1989; Baines & Mitsudera 1994; Baines 1995). 

Most of this work was carried out at CSIRO Aspendale, where Humio Mitsudera 
was funded by grants from the Australian Research Council and Shell Australia. The 
authors are also grateful to Bill Saric for drawing our attention to Prandtl’s work, and 
to a referee for pointing out the significance of critical layers and the ‘upper branch’ 
structure, and earlier references to the viscous modes of $4. 
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